Taming Cross-Tool Traceability in the Wild

Cosmina Cristina Ratiu*, Christoph Mayr-Dorn*, Wesley K. G. Assun¢do*, Alexander Egyed*
*Institute of Software Systems Engineering
Johannes Kepler University Linz
Linz, Austria

Abstract—Along the process of engineering a safety-critical
system, software engineers produce various artifacts, ranging
from requirements and change requests to source code and test
cases. In order to aid the development of the system and to
adhere to the complex safety regulations and standards in place,
engineers are often required to maintain bidirectional and consis-
tent traceability between the produced artifacts. However, such
artifacts are rarely maintained in one single tool. Because of that,
the cross-tool bidirectional traces have to frequently be manually
maintained, which can easily become a very time-consuming or
infeasible task. Through interviews and observations at our in-
dustry partners in regulated domains, we observed that a number
of different strategies are used to deal with this challenge. The
use of naming conventions, querying, or URL links is observed in
the industry. However, they have their shortcomings and hinder
engineers from realizing the full potential that traceability can
offer. Knowing the challenges in the industry, we explored existing
literature. A range of approaches in the literature aims at dealing
with traceability, but often they are context-specific and not easily
transferable into practice. Given this gap between the state-
of-the-art and industry needs, we performed interviews with
our industry partners and analyzed tertiary studies from the
literature to obtain a better understanding of what traceability
properties are needed to unleash the potential of traces. We
identified properties that represent the shared challenges between
the related work and the industry requirements: discoverability,
type checks, flexibility, navigability, and extensibility. While each
property is addressed by a subset of the available solutions, we
propose a novel traceability approach to support all of them in
a single tool.

Index Terms—Traceability, Regulation, Industry needs, Arti-
fact linking

I. INTRODUCTION

In safety-critical systems or regulation-centric domains
(e.g., aerospace, automotive, and robotics), the software de-
velopment process needs to produce traces between various
artifact. The need for such traces is to validate/demonstrate
that the system under development has expected quality [[1]]—
[3]. Some examples of the standards that require extensive
traceability throughout the process, from user requirements
down to test results, are the ASPICE standard applied in the
automotive domain [4]]-[7|], DO-178C/ED-12C for airborne
systems [8], or ED-109A for air traffic management systems.

Due to the complexity of developing such safety-critical
and regulated systems [9]], [[10], often variant-rich systems to
meet the requirements of many end users [11], [12], companies
typically utilize a diverse set of tools for managing the
artifacts created across the different stages of the development
process [[13]]. However, there is no de facto standard to keep
track of related artifacts created with different tools. Each

tool offers different means to support traceability [14]. For
example, some tools allow explicit traces to artifacts beyond
their tool boundary via an OSLC API, other cases require
the usage of third-party plugins that manages the traces and
links into the tools on either side of a trace link. Other traces
are manually managed by copying and pasting identifiers or
URLs into dedicated fields in the tools on both ends of a
trace link. Furthermore, discussions with our industry partners
have revealed that often a combination of these approaches
is necessary, which in turn increases the complexity of the
traceability process. Thus, maintaining consistent traceability
became a cumbersome, complex, and time-consuming process.

To make matters worse, establishing traces is perceived
as an unnecessary overhead by developers and rarely as
an activity they will benefit from [15]]. The only perceived
reason for having consistent and complete traces is regulatory
requirements. Surprisingly, realizing additional benefits such
as impact assessment or test prioritization is unexplored in
the automotive industry [16]. Hence, reducing the effort to
create and maintain traces while making them more amenable
to automated processing and navigation is a key aspect towards
increasing the efficiency and impact of traceability.

As part of the study reported in this paper, we conducted
interviews with engineers at one of our industry partners
to understand the practical implications and challenges of
traceability. Next, we compared their traceability approach
with our observations at other industry partners, as well as
those described in the literature [[16]. Then, the observed
challenges, including those found in the literature, motivated
and guided the design of our novel approach for dynamic trace
specification and navigation, including a prototype implemen-
tation used as a proof of concept.

The primary innovation of our approach is the dynamic
integration of trace information into the artifact representation
for seamless navigability. In other words, rather than having
traces only as separate artifacts, we dynamically augment the
artifact representation (i.e., the artifact’s metamodel) with a
trace specification, thereby making trace links available di-
rectly from the artifact instances themselves. One advantage of
automated processing of traces is no longer requiring manual
navigation across explicit traces or resolving of URLSs to obtain
the counterpart artifacts on which to continue navigation.

II. MOTIVATION AND PROBLEM STATEMENT

In this section, we describe traceability challenges and
strategies found in the industry while dealing with different

Stakeholder
Requirements

System Requirements

System Qualification Test

A

System Architecture

> Specification
Test Cases System Qualification Test
Results

<

Software Requirements

Software Architecture

System Integration Test
> Specification
=
—!i Results
Software Qualification
Test Results

Software Integration Test

A

Change Request

Any affected work
product

Software Detailed Design

Software Unit

Y

Software Qualification Test
Specification %‘
Software Integration Test
Results
Unit Test Results

Specification =II
W!;

Unit Test Specification

Work Product

A

P Static Verification Results

Fig. 1. Traceability Information Model (TIM) mandated by ASPICE (recreated from ASPICE v3.1 Fig D.4).

artifacts and tools. As previously mentioned, our observations
are based on seven interview{] with our industry partners,
during which engineers involved in the software develop-
ment process expressed their experiences and challenges when
dealing with traceability Also, we highlight the limitations
of existing traceability support in practice. Based on that,
we describe the desired properties that support compliance
with existing traceability regulations (e.g., ASPICE) while
providing additional benefits for the engineering tasks such
as impact assessment and test prioritization.

For the sake of completeness, we describe a generic engi-
neering process in a change-driven development environment.
The development process for our industry partners, and other
safety-critical system development, typically starts with a
change request coming from a client. For example, the client
may require an increase in the range of a particular configura-
tion parameter. Assuming the change request is approved, the
engineering team will determine the software requirements that
are affected, those that also need updating, and any additional
ones that need to be created. These requirements then also
need to be traced to higher level system requirements within
the requirements’ management tool and also to the change
request in the issue tracking tool. When both System and Soft-
ware Requirements are managed in the same tool, establishing
and managing bidirectional, navigable traces between them
is not a significant challenge. However, tracing across tools,
e.g., from the requirements (e.g., in IBM Rational DOORS)
to the change request (e.g., in Jira), is not as straightforward
without additional support. A common solution in the industry
involves the use of two URL links, on each side, to point to
the respective artifact in the other tool.

Based on the updated software requirements, the devel-
opment team changes and extends the models. The overall
set of models makes up the system design. Design and

'We invited participants for the interviews using convenience sampling, i.e.,
practitioners easily accessible in our industry partners [[17].

2Note that, due to confidentiality concerns, we cannot describe tools,
processes and exact trace types in detail.

Implementation activities occur in a wide variety of tools.
During design, engineers create a specifications document
for each implementation aspect, which can use textual flow
documentation, high-level model fragments, and links to the
requirements covered by different parts of the implementation.

Discoverability. To comply with the traceability regulations,
models (or architectural elements) must trace to the require-
ments they realize. Hence, any changed model may link to
new, updated, and existing software requirements. To this end,
engineers need to identify which are the respective require-
ments. When making a change to a large system, there are
potentially thousands of requirements and thousands of model
elements, which makes the traceability task cumbersome.

Identifying which of the updated and newly created re-
quirements need to trace to a particular model is usually not
a great challenge, as engineers typically have these require-
ments in mind when developing the model. Tracing to other
existing, relevant requirements, however, is a more difficult
task. As mentioned, due to the size of the system and amount
of requirements, it is unlikely that engineers know all the
requirements well enough to identify any further trace relations
without effort or additional help. This situation highlights the
first essential traceability property: Discoverability.

Discoverability is the ability of an engineer to become aware
of which traces already exist as well as to identify all the
possible endpoint artifacts at the desired level of granularity.

Type checks. In addition to the discovery artifacts to trace,
traceability regulations mandate traces between specific ar-
tifacts (i.e., endpoints), e.g., traces between Software Re-
quirements and Software Units (see Figure [I). To this end,
engineers must ensure that they create traces between the
right artifact types and avoid traces between artifacts that
need not be traced (by accident or an unclear trace process).
Thus, discoverability is tightly related to another traceability
property: Type checks.

Type checks give engineers the ability to ensure that the
created traces indeed are those as required by a given
regulatory standard.

Engineers in the industry face a challenge for type checks,
as the set of tools in use provides type checks that are usually
limited. In fact, tools typically allow establishing a trace from
any of its managed artifacts to any other artifact type for the
simple reason that tools need to be flexible for use in many
different development contexts. No type checks are available
when simply URLSs of artifacts or their identifiers are used to
establish the trace (see also the Navigability property below).
The lack of type checks may lead to incomplete/incorrect trace
information that is then only later found during reviews. One
mitigation strategy available for customizable tools, we found
with our industry partners, is the deployment of plugins or ex-
tensions that restrict or guide engineers during trace creation.
However, the development, configuration, and maintenance of
these in-house plugins require significant effort and often need
to be done for any type of cross-tool trace (e.g., requirements
to model and requirements to test cases).

We have an example of the effect of lacking type checks.
Most often, there exists a system specification document that
describes each system component, including trace links to
the related requirements, e.g., by specifying a requirement
ID. When this ID is manually added, there are no automatic
type checks to ensure it is actually an existing requirement.
Thus, inconsistencies are only detected during a manual review
process, which is costly and delays the development process.

Type checks support Discoverability as they trivially allow
filtering based on trace types, filtering the endpoint artifacts
to be displayed when creating a trace. Also, type safety might
restrict the engineers by limiting the available traces to a subset
inadequate for the underlying development process.

Flexibility. Regulations need to be applicable to many dif-
ferent companies and development scenarios. Hence, they
describe the traceability information model only at an abstract
level (e.g., system requirements or software units) without
identifying concrete artifact types and their tools (e.g., a
requirement in DOORS or a C++ header file versioned in Git).
It is then up to the companies to establish a grounding of these
abstract trace definitions to concrete traces and trace types
within their tool environment. Thus, the required trace infor-
mation is ultimately grounded in tools that are typically more
generic, rather than specifically made for just that regulatory
trace standard. Additionally, large companies and/or complex
systems usually come with the need to integrate different tools
and artifacts. Different programming languages, different mod-
elling languages, different requirements or change requests,
and even different processes require each a separate grounding
of the abstract trace definitions. To meet industrial needs, we
have an essential traceability property: Flexibility.

Flexibility describes the ability to define the set of specific
trace types (independent of the utilized tools) at the level of
concrete artifacts.

A common example encountered by our industry partners
is that different test case to software requirement tracing
possibilities exist depending on the representation of the test
cases. One option could be in the context of docs-as-code to
specify the identification of the requirement by ID in a so-
called ReStructured ﬁleE] that describes the test case, while the
alternative option specifies the use of a Test Case item in Jira.

Similarly, some teams within one organization may generate
all their code from models, while other teams may require
additional manual coding activities. The traceability between
requirements and implementation still has to be ensured, but
needs to be done differently. The former kind of team uses
the documentation of their models to establish the traces to
requirements. The latter kind of team might require a different
set of traceability support tools that enables tracing from more
fine-grained artifacts, such as classes or even methods.

Ultimately, Flexibility enables the benefits of Type Checks to
be available in many different development contexts within the
same organization and toolset. Together with Discoverability,
these are essential in creating and maintaining traces but not
sufficient for efficient consumption.

Navigability. Often it is required to be able to traverse a
trace link in both directions (i.e., bidirectional tracing) as, for
example, mandated by ASPICE (see Figure [I) and DO-178C.

Continuing with the test case to requirements traceability
example above, when test cases are specified in ReStructured
text files, no explicit traceability support is available. One
possibility to establish traceability is by including a URL to the
requirement in a specific part of the document. In the opposite
direction, one may not want to manage a plethora of URLSs to
downstream artifacts but rather apply a search function, i.e.,
RST files are filtered based on the appearance of a requirement
URL, a far from ideal solution.

Establishing traces bottom-up as well as right (verification)
to left (specification) is a common practice as most processes
foresee creating coarse-grained artifacts such as system re-
quirements first to be followed by refinement into finer-level
artifacts such as software requirements. However, traceability
audits, for example, are done top-down to check that system
requirements are covered by system qualification test cases,
and are covered by software requirements. Basically, in order
to use traces, Navigability is an important property.

Navigability describes the ability of an engineer (or also a
supporting tool) to traverse the trace graph from one artifact
endpoint to another.

Our industry partners have reported that creating navigable
bidirectional links is a challenge that requires time and effort
to do completely and consistently. The tools they use are
not well integrated, such as the traces between requirements
and test cases, which often results in engineers creating two
unidirectional links at each endpoint that have to be maintained
separately. While the requirements can be linked to the test
cases through search functions, each test case is provided with

3https:/en.wikipedia.org/wiki/ReStructured Text

https://en.wikipedia.org/wiki/ReStructuredText

a field which links to the covered requirements through URL
links. These two traces then have to be maintained separately.

Beyond human navigability, machine-readable navigability
is an even greater challenge. There are potential benefits of
trace links beyond regulatory requirements, such as support for
change impact analysis [|18]—[20], consistency checking [19],
[21], change propagation [22], [23]], or test case prioritiza-
tion [24], [25]. For that, tools need to access engineering
artifacts, regardless of how these are managed across different
tools. While using URL links is sufficient for human naviga-
bility, where the engineers can traverse from artifact to artifact
by following the links, they pose a challenge to programmatic
navigability as a URL typically lacks any hints on what to
expect (at the semantic level, beyond a web resource) and how
to access that artifact at the URL’s endpointE] A supporting
mechanism to navigate programmatically across tools has to
become aware of not just how to access the various artifact,
but also understand their data model.

This challenge remains largely unresolved in practice.
Hence, traces are primarily set for documentation purposes
only, and many checks that could be otherwise automated
are done by manually navigating the links. This implies that
engineers are the producers of trace links without benefiting
much from their existence. While they understand the impor-
tance of traces from a regulatory perspective, they do not see
the use of such links from their own perspective. Therefore,
their motivation lies in setting traces to fulfil the regulatory
requirements rather than traces that can help them automate
further process steps. Overall, Navigability is challenging by
itself in a fixed tool landscape with a stable set of trace types.

Extensibility. Systems in the automotive domain are typically
maintained and evolved over longer periods of time. As
expected, engineers of such systems experience changes to
the regulatory standards, engineering processes, and available
tools. These changes often come with the necessity to adapt
the mandated trace types, hence the need for Extensibility.

Extensibility is the ability to introduce new trace types and
trace to novel tools once a project or system has already un-
dergone significant development (and hence tracing) effort.

The introduction of new trace types must not invalidate
any preexisting trace instances already available, but be able
to maintain new and former trace types at the same time.
New engineering tools come with their own metamodel and
model elements, which need to be integrated seamlessly within
the existing trace model. Not only should these elements be
linkable within the model (see Navigability), but an extensible
trace mechanism should also make the engineer aware of
whether new model elements were considered for traceability
or not (see Discoverability).

One example of adding new trace types by one of our
industry partners was the decision to explicitly trace artifacts
emerging from functional safety engineering (ISO 26262)

4OSLC aims to overcome this shortcoming to some degree, but a navigation
mechanism still needs to remain aware of the tool boundaries.

efforts. Functional safety-related artifacts include failure mode
and effect analysis (FMEA) results or fault tree analysis
(FTA) results but could even include detailed artifacts such
as individual safety hazards [26]. A safety case then identifies
all safety-relevant artifacts via traces. These new trace types
need to be supported in any engineering context (also in any
tool) that strives to adhere to Functional Safety regulations.

In addition to eliciting the desirable traceability properties
with our industry partners, we investigated the state of the art
as well as existing open-source or commercial tooling support
to understand to what extent companies are facing the same
challenges, respectively to what extent these are solved. To
this end, we discuss the representative state of the art and
tools regarding traceability in the next section.

III. STATE OF THE ART AND THE PRACTICE

This section describes the state of the art and the practice
in the topic of our work. At the center is an insightful tertiary
study by Maro et al. [16] that reports challenges and solutions
of traceability in the automotive domain. For the state of the
practice, we describe a popular set of industrial and open-
source tools and how they support the properties described
in the previous section. The tools were selected based on
recommendations and experience reviews coming from our
industry partners.

A. Traceability Support Challenges

After collecting the properties desired by our industry
partners, we searched for related work in the literature to
identify a set of challenges that overlap with our findings. In
this section, we describe such an overlap and compare them
to the challenges reported by Maro et al. [[16], of which an
overview is presented in Figure [

— Knowledge of Traceability —
-)[Level of Granularity }

_)[Difficult to Define }

[Flexible Definitions e —

Tool Support
[Type Safety -){ Lack of Configurable too/s]
-)[Inaccessibility of Artifacts }
{ Extensibility -)[Diverse Artifacts and Too/s}
4)[Manual Work }
[Navigability

Use of Traceability —

Traceability Links Unused

[Discoverability

r Measurement of Traceability

-){Assessment of Traceability]

Fig. 2. Required properties observed in our industry partners compared with
challenges presented by Maro et al. [16]

We find parallels between the need for discoverability
and the required manual work and assessment of traceability
challenges posed by Maro et al. [16]. A significant hur-
dle in the way of addressing these challenges is the effort
required to find the artifacts that need to be traced and
identify missing traces [27]]. While the literature is extensively
exploring the automatic generation of trace links and using
artificial intelligence in this sense, Fucci et al. [28] highlight
that many organizations cannot benefit from these techniques
due to the structure and diversity of the artifacts they use.
This leaves the problem yet unsolved, being supported by
trace visualizations such as matrix views [29]-[31]], or even
expecting the engineers to look up artifact IDs in other tools,
as addressed by Wohlrab et al. [32]].

Type checks become a topic of interest as soon as the
diversity of the artifacts and tools increases to the point
where integration is necessary. Tool integration is a major
challenge still open in the literature [33]], as well as in the
tools available in practice [28]], [30], [32]]. In the industry, this
problem is addressed in different ways, from using URL links
as presented in Section [[I} to copying artifact IDs [32]. While
these solutions are usable, they allow a level of flexibility that
impedes actionable and effective guidance [33]].

Further, the variety in artifact types and tools used, even
within one company, can lead to difficulties in defining a
traceability information model (TIM) [16], [34]], which is
related to flexible definitions. The traceability requirements
may differ depending on the stakeholder and their specific
needs in the project [31|], [34], the granularity level of the
artifacts to be linked [16], [28] and the business processes
used by the organization [35]], [36]]. The result is the need to
support increasingly complex traceability information models.
Therefore, the tools should be configurable enough to allow
flexible trace type definitions [33]].

The level of complexity does not remain stagnant during
the development process, but instead continues to rise as the
project and its requirements evolve [34]. Thus, the TIMs are
also evolving [16], which may lead to new trace types being
added to a TIM in the middle of the development process.
Moreover, as the needs of the stakeholders evolve, new fools
with different artifact types could be introduced, requiring
traces to new types of elements [33]], [34]]. The traceability
support tools should not only be configurable enough to allow
flexible definitions, but additionally, they should be extensible
to address changes and additions to these definitions without
affecting existent trace links.

Finally, even solving the above issues, a challenge that
persists involves the engineers directly, in that they cannot see
the benefit in creating and maintaining trace links, as noted
by Wohlrab et al. [32]]. Indeed, Maro et al. [16] discuss their
observation that after creation, most traceability links remain
unused. Additionally, they mention that, although linked, the
artifacts remain inaccessible because the traces cannot be
properly navigated (navigability). The addition of navigable
traces not only motivates the need for thorough traceability,
but also opens the possibilities to multiple processes being

automated, such as link assessment [16], [32], coverage anal-
ysis and documentation support [30]], as well as consistency
checks and change impact analysis [27], [33], [35].

B. Traceability Support in the State-of-the-Art Tools

In this subsection, we compare four common traceability
tools that we identified via literature research and through
informal discussions with our various industry collaborators,
including our industry partners. We used the tools’ existing
documentation to evaluate the extent to which they cover the
five traceability support properties we have identified. The
results of this analysis can be seen in Table [I}

TABLE 1
TOOLS SUPPORT FOR TRACEABILITY PROPERTIES IN PRACTICE

Tool Discpyer— Ty\pe Fl.e?gi— Nayiga— ExFepsi—
ability Safety | bility bility bility
CAPRA | J | J | J O O
DOORS © © O © w)
Polarion o o)) wj
Reqtify @ @) @) o ([
Our approach o o o o [

O Not supported,) Partially supported, [fully supported

A well-known open-source traceability tool that emerged
from the scientific community is Eclipse CAPRAE] which is
the state-of-the-art traceability support tool in the scientific
literature. The main goal in its design is flexibility, and its
EMF base is highly supportive of this property. Any artifact
type that can be represented in EMF can also be linked in
CAPRA. Moreover, the trace links are also typed, assuring
additional type checks. However, it must be noted that, despite
being extensible, EMF has the disadvantage of requiring
regeneration of the underlying datamodel to make use of new
customizations. Therefore, CAPRA’s extensibility cannot be
achieved at runtime. Hence, a lot of effort is required to
create a suitable trace type configuration before traceability
starts. This configuration in itself is highly flexible, but new
required trace types would be more cumbersome to integrate.
Additionally, CAPRA offers a range of visualizations, but most
of them are geared towards analyzing the existent links, and
less toward aiding the user in discovering possible endpoints
for new traces. Finally, the traceability model is stored as
an EMF model, but by default, CAPRA does not offer any
programmatic navigability features over the created links.

Next, we have considered IBM Rational DOORSE] a tool
our industry partners are already using in part in their require-
ment engineering processes. This tool supports three different
kinds of links: internal, external, and collaboration links. The
internal links can only connect the artifacts created in the
same DOORS database. As our solution focuses on cross-tool
traceability, these links fall outside our scope. We are therefore
only considering external and collaboration links in our discus-
sion. The external links connect the DOORS artifacts with any

Shttps://projects.eclipse.org/projects/modeling.capra
Shttps://www.ibm.com/products/requirements-management

https://projects.eclipse.org/projects/modeling.capra
https://www.ibm.com/products/requirements-management

artifact outside the DOORS database, through URL links. This
solution partially covers the problems of navigability. These
links can both be easily used by practitioners for navigation
and can be parsed to result in a level of programmatic navi-
gability that could fulfil part of the use cases for traceability.
However, type checks cannot be assured as any element can be
linked as long as a URL link can be obtained. This also leads to
discoverability being impossible to assure. On the other hand,
collaboration links trace the DOORS requirements to artifacts
created in tools which support OSLC. This results in links that
are typed, allowing for type checks, as well as discoverable,
by allowing the visualization of the linkable elements in the
target tool. DOORS also allows the navigation of these OSLC
links manually through previews when hovering over a link,
but not programmatically without additional services added to
the default configuration. However, each tool that is integrated
with OSLC only provides a specific set of link types, which
cannot be expanded easily with user-created traceability types.
This results in lower levels of extensibility and flexibility in
the definitions of the links.

A similar tool that is often used in industry is Siemens
Polarionﬂ which also focuses on requirement management,
but allows tracing the requirements to different artifacts within
a system. The traces are typed, with a variety of trace types
being available for different combinations of source and target
types. This assures type checks to a high degree, but also
reduces the flexibility for defining new trace types. From the
perspective of the endpoints, a listener reacts to any new in-
stances of an endpoint type and they are immediately available
for tracing. Additionally, multiple visualization options allow
the discovery of traceable instances and a view of the trace
status in the system. Yet, Polarion can use the created traces
to perform change impact analysis and coverage analysis,
implying that the links are programmatically navigable.

Finally, Reqtifyﬂ is another requirement management tool
frequently used in the industry, in terms of traceability to
requirements. The traces created in this tool document the
requirement coverage by test cases and other relevant artifacts.
As such, the endpoints of these links are not type-checked,
resulting also in less flexible definitions, in that no other
trace types besides coverage can be specified. However, new
elements are automatically added to the tree view of traceable
endpoints, resulting in a highly extensible solution, which
also allows for easy discovery of possible traced elements.
Additionally, Reqtify allows a full programmatic navigation
of the trace network to determine the requirement coverage
status.

While this set of tools is just an excerpt, to the best of our
knowledge they represent the tool capabilities available for
software and systems engineering. As highlighted in Table [I|
none of them fully covers all the properties desired by com-
mercial development in general, and our industry partners in
particular. To pave the way in the direction of having such

"https://polarion.plm.automation.siemens.com/
8https://www.3ds.com/products-services/catia/products/reqtify/

a kind of tool support, this paper describes our proposed
approach, described in the following sections.

IV. APPROACH

Our traceability approach addresses the five traceability
properties through a combination of mechanisms (see Fig-
ure [3). We briefly introduce these mechanisms below and
discuss them in more detail in the following subsections.

A. Architecture Overview

The primary design decision is a centralized collection of
engineering artifacts with a flexible data model. Each Tool
Connector (A) describes the artifacts in the respective tool
independently of any other tool. The Trace Type Specification
refers to these data models to specify which artifact type
traces to which other artifact type (B), thereby resulting in
a dynamically generated Trace Matrix for each trace type (C).
Changes in tools to an artifact (i.e., creation, deletion, and
update) are pushed into the Artifact Store (D). This includes
changes to tool-internally defined traces that need to be
translated into our internal trace model. These changes result
in events processed by the Trace Matrix Maintainer (E) that
ensure that each affected trace matrix contains an up-to-
date list of artifacts by shrinking/expanding the matrix (F).
These change events are also used by Link Translators to
import manually managed cross-tool trace (G) and Trace
Analysis Services and Plugins (J) to check for likely missing
or incorrect traces. Creating new and correcting existing traces
occurs via the Trace Matrix Dashboard (H). When possible,
these traces are propagated back to the respective tools via the
Link Translators (1).

B. Engineering Artifact Integration

The first step in providing traceability support is finding a
common space where all the artifacts are brought together. In
our approach, we achieve this by using DesignSpace{ﬂ as the
underlying artifact store [37]. DesignSpace stores all artifacts
uniformly, allowing them to be further linked and reasoned
with beyond the boundary of their origin tool, while also
keeping them synchronized with their in-tool representation.

In order to achieve this uniformity, DesignSpace stores each
model together with its respective metamodel. The metamodel
is represented as artifact type elements, called InstanceTypes
(see Figure || top). InstanceTypes specify the structure of the
respective artifacts (i.e., the available artifact properties), as
well as the relations they have to other elements within the tool
they are created in. In Figure [d we depicted a RequirementType
and C++Type (without detailing any properties or relations
for sake of clarity) that represent a requirement from a tool
like DOORS, and a C++ class file, respectively, available via
GitHub, for example. Then, each specific artifact is an Instance
of one InstanceType, with its structure adhering to that type
and hence its defining information accessible via the defined
Properties. This uniformity balances flexible definitions with

9https://isse.jku.at/designspace/

https://polarion.plm.automation.siemens.com/
https://www.3ds.com/products-services/catia/products/reqtify/
https://isse.jku.at/designspace/

Engineers
QA Engineer Developer
Architect

< & @

| Trace Matrix Dashboard H

Team
Lead

System

£

Trace Matrix Maintainer Edit [ecejanalysisiSeice
H and Plugins

Extend/ Change H

Shrink Events i

Design Space (Artifact Store) Trace Matrix

Trace Type
Specification

Engineering
Artifacts

Push Updates A@

Tool Connectors |

import

G _(:D propagate

Link Translators

o2 v, (
"RA AzureDevOps poranice GltHub

Fig. 3. Approach Overview

type safety. Figure 4| bottom depicts a few requirements and
C++ class instances.

In order to make the artifacts in the various tools avail-
able in DesignSpace, a Tool Connector is required for each
tool, similar to how EMF-supporting tools are integrated into
Eclipse CAPRA. These adapters determine which elements
are available within a tool and translate between the tool’s
artifact representation (i.e., the tool’s metamodel) and the
artifact representation (i.e., InstanceType) in DesignSpace.
Any change to an Instance, whether it is happening in the tool
or in the artifact store, is synchronized via the Tool Connector.
However, an advantage compared to EMF that contributes
towards extensibility is the fact that new Tool Connectors
and hence also new InstanceType definitions can be added
at runtime without requiring additional integration steps. This
includes the ability to change existing type definitions.

C. Traceability Data Model

The trace type specification metamodel within DesignSpace
uses the same structure as the artifact metamodels. Thus,
trace types are a distinct set of InstanceTypes, which inherit
from a generic TraceMatrixType element (see Figure [] top).
Each trace type is defined by its name and the types of the
two endpoints it connects (i.e., two InstanceTypes). The two
InstanceTypes are referred to via the RowType and Column-
Type that make up the matrix. Therefore, DesignSpace assures
traces are type checked in that the approach does not allow a

trace to link to any other type than the one defined in its trace
type definition. The two endpoint types can be any Instance-
Type available in DesignSpace, resulting in complete definition
flexibility. In Figure] we depict a requirements-to-code matrix
type (ReqToCodeMatrixType) pointing to the earlier defined
RequirmentType and C++Type. The TraceMatrixType further
defines that each traceability matrix instance has a set of
Rows and Columns that are kept in sync to represent the
matrix structure. A row does not simply contain references
to Instances, but rather maintains three sets of references: T,
N, and U traces.

As introduced in our earlier work [38]], we distinguish not
just between the existence of a trace and its absence but
instead use a trinary status: 7, N, U. A T-trace describes
an explicit decision by an engineer that there exists a trace
between two artifacts. An N-trace describes a strong, explicit
absence of a trace. Finally, a U-trace describes an uncertain
trace, a situation in which an engineer has not made an
explicit decision between a T- and an N-trace. This approach
is compatible with other traditional works on traceability that
only consider the absence or presence of a trace by treating
the absence of a trace as a U-trace. We outline the benefit of
T, N, and U traces in our prior work [38]-[40].

Programmatic navigability is one of the main focus points
of our approach. DesignSpace supports seamless and uniform
navigability through properties, where the property contains
a reference to another instance. In the absence of traces,
these referenced instances are typically artifacts from the
same tool as set by the Tool Connector. As Tool Connectors
are by definition tool specific, they are unaware of any
cross-tool traces and hence cannot foresee in the artifact’s
InstanceType the possibility of any such a trace. Hence,
we use the DesignSpace’s ability to dynamically alter an
InstanceType to achieve navigability of trace links. Concretely,
each of the possible endpoints for a trace matrix type (i.e.,
an InstanceType) is augmented with an additional property
that points to its corresponding matrix row or column. In
Figure[d] the creation of the ReqToCodeMatrixType resulted in
a traceToCode property added in the RequirementType and a
traceToReq property in the C++Type. Note that it is irrelevant
which of the two InstanceTypes is managed via a row and
which one via a column, as rows and columns have the same
underlying datamodel and behave exactly identically.

Currently, we add trace type definitions to DesignSpace via
its API programmatically, as we currently have not defined
any external JSON or XML trace type definition format.

DesignSpace provides a folder-based storage system, so that
the users can organize their artifacts in different folder hierar-
chies. Upon trace matrix instantiation, this storage mechanism
is used for two aspects: first, to specify a storage location
for the traces themselves, and second, to limit the trace
endpoints to the set of artifacts placed in the specified folders.
For example, in Figure [] the trace matrix instance Trace-
MatrixProjectl is initialized with folder ReqFolderProjl and
CodeFolderProjl, thereby ignoring any C++Type instances
and RequirementType instances in any other folder.

InstanceType

1

RequirementType C++Type

-traceToCode : Column

—

Column

Row

-Ntraces -Ntraces

-traceToReq : Row

-Ttraces |- Ttraces

ReqToCodeMatrixType

|-Utraces -Utraces

-RowType : RequirementType
-ColumnType : C++Type

Instances

TraceMatrixProject1 : ReqToCodeMatrixType

RowType : RequirementType
ColumnType : C++Type

TraceMatrixProject2 : ReqToCodeMatrixType
[RowType : RequirementType
[ColumnType : C++Type

RowReqClass1 : Row
Ntraces = Req1, Req2
Ttraces
Utraces

@

ReqFolderProj1 FolderProj2

Reg1 : RequirementType Req3 : RequirementType

aceToCode : Column traceToCode : Column

® RowReqClass2 : Row <
Ntraces = Req1
Ttraces = Req2

Reg2 : RequirementType Req4 : RequirementType

raceToCode : Column traceToCode : Column

Utraces

RowReqClass3 : Row|

Reg5 : RequirementType

Ntraces
Ttraces = Req1
Utraces = Req2

traceToCode : Column

CodeFolderProj1

Class1 : C++Type Class4 : C++Type

ColumnCodeReq1 : Column|

Ntraces = Class1, Class2
Ttraces = Class3

raceToReq : Row traceToReq : Row

Class2 : C++Type Class5 : C++Type

Utraces

ColumnCodeReq2 : Column|
<

Ntraces = Class1

traceToReq : Row lraceToReq : Row

Class3 : C++Type

Ttraces = Class2
Utraces = Class3

traceToReq : Row

Fig. 4. Trace Meta Model and Instance examples (UML Class Diagram).

Upon the instantiation, every RowType InstanceType (here
RequirementType) obtains a link to a Column instance having
all ColumnType instances listed in the column’s Utraces prop-
erty. For example, in Figure] Req! and Reg2 point to their
individual columns instances that represent the traces to the
available classes Classl, Class2, and Class3. In Figure E], we
depict the traces in columns and rows as artifact identifiers
and not as arrows back to instances for sake of clarity.

Likewise, every ColumnType InstanceType (here C++Type)
obtains a link to a Row instance having all RowType instances
listed in the row’s Utraces property. The Trace Matrix Main-
tainer ensures that rows and columns are kept consistent.

Ultimately, this allows consuming traces from two perspec-
tives. From the point of a trace matrix, one can generate the
traditional matrix view and navigate onward to the individual
artifact instances. More importantly, it becomes possible to
traverse from an artifact instance to any other traced artifact
instance via the trace properties. Obtaining all classes that a
requirement 7-traces to becomes simply a matter of navigating
(in OCL syntax) “self.traceToCode.Ttraces”.

D. Trace matrix growing and shrinking

As engineering work continues over time, engineers create
new artifacts that are synchronized into DesignSpace via
the Tool Connectors (cf. Figurd3| (D)). The Trace Matrix
Maintainer processes the creation events (cf. Figurd3] (E)) and
determines which trace matrices the new instance needs to
be part of by matching the endpoint type of the trace matrix
instances and the instance folder. For each matching trace
matrix, all the instance traces are set to “undefined” (i.e., its
row/column contains only U-traces), and all existing opposite
endpoints obtain one corresponding new entry in their U-trace
set (cf. Figur (F)). Likewise, removing instances results in
the removal of its column/row and corresponding entries in
the opposite endpoint trace sets.

E. Trace importing and creation

Traces across tools are often captured via IDs or URLs
in dedicated fields that are typically just treated as plain
strings in Tool Connectors. Recall that Tool Connectors are
unaware of other tools and hence unable to insert any cross-
tool links as they are unaware of the semantics of any
properties used to define external trace links. Here, we apply

Link Translators that are aware of the two endpoint types
for a particular trace they support, and are configured from
which property to extract an artifact identifier, how to use
that artifact identifier to resolve DesignSpace instance, and
subsequently insert the respective entry in the trace matrix.
Ultimately, creating the trace link requires only navigating to
the respective trace property (e.g., traceToCode or traceToReq)
of one of the trace’s endpoint instances and adding the other
endpoint instance to the Ttraces property. At this point, we
provide a Link Translator for URL links. For example, if a
GitHub issue is linked to a Jira issue, this can be specified with
a certain encoding in the GitHub issue’s description. When the
description is stored within DesignSpace as part of the Tool
connector’s synchronization, this encoding is automatically
parsed, and the corresponding trace is established.

Aside from the navigable representation directly within the
model structure, traces are available in matrix format from
the trace matrix instance, which is used for visualizing in a
table format in a graphical user interface, the Trace Matrix
Dashboard. This is the main trace visualization available in our
prototype at the moment, and supports the users in the process
of discovering trace endpoints and creating new traces within
DesignSpace. In the dashboard, the user selects the trace type
and one corresponding trace matrix instance they are interested
in. The matrix view is then populated with information from
the trace matrix rows and columns instances.

Here, the user can set new traces by selecting the proper cell
and changing its status to traced, marked with the symbol “T”
or the description “Linked”. Additionally, if there is knowledge
that there is absolutely no trace between the cell’s row and
column instances, this can be marked as not traced, with the
symbol “N” or the description “Not linked”. For the purpose
of supporting collaboration, as well as extensibility, any cell
that is not specifically set to either traced or not traced, is
marked with the symbol “U” as undefined.

F. Propagation trace changes back into tools

Once new or updated traces are available as a property
directly from the artifact instance in DesignSpace, the task of
synchronizing these changes back into the artifact originating
tool arises. For intra-tool traces, the Tool connectors are able
to conduct such a synchronization. For manually maintained
cross-tool traces such as artifact IDs or URLs, the Link
Translators would be able to translate the trace information
back into the tool (cf. Figure3| (H)). For many artifacts such as
the C++Type there might not exist a robust solution to embed
trace information in the artifact within the tool at all. Here a
tool plugin connecting to DesignSpace (cf. Figur (J)), such
as the ones we describe in the next section, might provide a
better solution for making use of traces. Overall, embedding
cross-tool traces in their originating artifacts is a tool-specific
task and cannot be solved in a generic manner.

In contrast to Link Translators or Tool Connectors that use
a tool’s API, Trace Analysis Services and Plugins typically
require an extension of the engineering tool and hence are
very application specific.

V. PRELIMINARY EVALUATION

The collaboration with our industry partners excludes dis-
closing in-depth software details and tool support that are part
of their ongoing engineering processes. Therefore, our evalu-
ation is based primarily on a scenario constructed to closely
follow the processes and the artifacts involved in a product
developed by an automotive company. In order to evaluate the
feasibility of the proposed approach, we developed a prototype
of our approach for the scenario, focusing on the traceability
of requirements to code.

We use our prototype to trace requirements to the Java
classes that implement themET] In this regard, the prototype is a
simplified implementation of the features/properties described
above (see Section [[). This version does not consider the
folder organization offered by DesignSpace, which implies
each trace type can only be instantiated with one trace ma-
trix that considers all the instances of each endpoint type,
regardless of the location where they are stored. Considering
this design decision in this scenario, the case study system
includes three requirements (for sake of simplicity) and the
Java source code of a robotic arm.

Our evaluation purpose is to document and create the corre-
sponding trace links and, further, to exercise the navigability
of the trace links by exploring automatic consistency checking.
DesignSpace supports checking consistency rules through an
integrated service, which allows the user to specify OCL
constraints in the context of an instance type. Subsequently,
the constraint will be checked for all the instances of said
instance type, determining their consistency with regard to the
constraint. Any newly created instance of the instance type will
automatically be evaluated for its adherence to the constraint.
Further, any change that happens to an instance automatically
triggers the re-evaluation of the consistency rules.

We evaluate trace completeness by checking that each class
in the source code is traced to at least one requirement.
To obtain this, we first create a trace matrix that connects
the requirement type to the Java class type representation in
DesignSpace, naming the trace matrix “implements”, as shown
in Figure E} ‘We then introduce the traces into the matrix, with
“Linked” representing a T-trace, and “Not linked” representing
an N-trace. We leave a number of trace links undefined, as
the relationship they represent has not been explored yet. The
Point class is an example of Java class that does not have a
link (i.e., neither traced nor not traced) to any requirement.
Next, we access the consistency rule service and create a new
consistency rule. This rule is attached to the Java class instance
type and requires it to be linked to at least one requirement.
After creating the rule, it is automatically checked in the
background. When we navigate in the source code tool to
one of the classes that are violating this constraint, such as
the Point class mentioned before, a warning is informing us
that a link to a requirement is missing, as shown in Figure [§]

1A video demonstration of this prototype is available at
https://drive.google.com/file/d/1 AgE78cItarPAWIgktSwWLH3BrOvOcbQrp/
view ?usp=share_link.

https://drive.google.com/file/d/1AgE78cItarPAWIgkf8wLH3BrOv0cbQrp/view?usp=share_link
https://drive.google.com/file/d/1AgE78cItarPAWIgkf8wLH3BrOv0cbQrp/view?usp=share_link

-
Link Type: |impleme ~ New Link Type

Source Type: Class

Target Type: Requirement

The robot should be i... The robot should bea..

Command{5623} Undefined

CommandPattern{5863} _ Undefined

the robot shoulc
Undefined
Undefined

ConfigurationExceptio... Undefined Undefined

Error{2270} Undefined Undefined Linked
MoveCommand{6386] Undefined _ Undefined
PlaceCommand{6769} Undefined Undefined
Point{3334} Undefined Undefined Undefined
ReportCommand{7273] Undefined Undefined Undefined
Robot{3821} _ Undefined Undefined
RotateLeftCommand{... _ Undefined Undefined
RotateRightCommand... _ Undefined Undefined

RotationDirection!5170) Lindefinad lindefinad Lindefinad

Fig. 5. Excerpt of artifacts and trace links in use at our industry partners.

public final class .’uint {
private final int x;
private final int y;

public Point(int x, int y) {
this.x = x;
this.y = y;

}

public Point update(BiFunction<Integer, Intege

public String toString() { return getX() + ","
public int getX() { return x; }

pblic int getY() { return y; }

Java Class must implement a requirement->Point

Fig. 6. Example of warning informing that a link to a requirement is missing.

This scenario highlights one of the many possible use cases
in which the traces are an intermediary product to further
automated engineering support. Besides consistency checking,
different processes such as change impact analysis, test cov-
erage reports, and identifying test cases for regression testing
are some examples in which establishing and navigating traces
across tools results in a significant increase in the efficiency
and opportunity for automation. In the absence of navigable
trace links, all these operations have to be done manually.

VI. CONCLUDING REMARKS

In this paper, we have discussed the remaining challenges
in the face of supporting traceability in safety-critical and
regulation-centric domains, especially in the automotive in-
dustry. In collaboration with our industry partners, we have

identified a set of five desired properties for their current
development process: discoverability, type checks, flexible
definitions, navigability, and extensibility. These properties are
still missing from the typical tool support offered to engineers
for setting trace links, and can be mapped to open challenges in
the literature. To fill this gap, we have proposed an approach
that covers these characteristics to provide effective and ac-
tionable cross-tool traceability support. We have evaluated the
feasibility of the approach in a scenario designed based on the
processes followed by our industry partners.

There are a number of future development areas we are
interested in further investigating. One such area is the issue
of trace visualization. The trace matrix we offer has a number
of advantages, from usability to offering a clear overview
of the traces involved in a project. However, we have no
certain indication whether it is the best visualization option
for projects of all sizes and types. During our discussions
with our industry partners, we have noted a few possible
refinements or alternatives to this option, such as a filtered
view per artifacts or process progress instead of the full matrix
view. We consider further research necessary to determine
what other visualization options are helpful in practice.

We also envisage that our approach can offer trace rec-
ommendations based on the relationships between artifacts
and the trace information already set in the system (see
Section [IV). We plan to extend the context of these recom-
mendations to be applicable to more use cases. We will also
explore other trace recommendation systems studied in the
literature, as well as different automation solutions, and how
they could be integrated into DesignSpace.

Another area of interest we see as an opportunity for further
investigation is integrating versioning into our traceability
model. Currently, DesignSpace maintains a full and compre-
hensive history of the artifacts stored within it, but does not
support the concept of versioning as used by our industry
partners, i.e., maintaining multiple variants of the same artifact
at the same time. Further research is necessary to understand
how traceability can be best supported for such scenarios and
how the traceability effort can be minimized for engineers.

ACKNOWLEDGMENT

This work has been supported by the Austrian Science
Fund (FWF) grant P31989-N31 and P34805-N; the FFG Con-
tract No. 881844: “Pro?Future is funded within the Austrian
COMET Program Competence Centers for Excellent Tech-
nologies under the auspices of the Austrian Federal Ministry
for Climate Action, Environment, Energy, Mobility, Innovation
and Technology, the Austrian Federal Ministry for Digital
and Economic Affairs and of the Provinces of Upper Austria
and Styria. COMET is managed by the Austrian Research
Promotion Agency FFG”; the LIT Secure and Correct System
Lab sponsored by the province of Upper Austria; and the
COMET-K2 Center of the Linz Center of Mechatronics (LCM)
funded by the Austrian federal government and the federal
state of Upper Austria.

[1]

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES

M.-A. Peraldi-Frati and A. Albinet, “Requirement traceability in safety
critical systems,” in st Workshop on Critical Automotive Applications:
Robustness & Safety, ser. CARS "10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 11-14.

P. Mason, “On traceability for safety critical systems engineering,” in
12th Asia-Pacific Software Engineering Conference (APSEC’05), 2005,
pp- 8 pp-—.

J. Hill and S. Tilley, “Creating safety requirements traceability for
assuring and recertifying legacy safety-critical systems,” in /8th IEEE
International Requirements Engineering Conference, 2010, pp. 297-302.
VDA QMC Working Group 13 / Automotive SIG, “Automotive SPICE
Process Assessment / Reference Model,” pp. 1-128.

R. Messnarz, D. Ekert, T. Zehetner, and L. Aschbacher, “Experiences
with aspice 3.1 and the vda automotive spice guidelines—using advanced
assessment systems,” in European Conference on Software Process
Improvement. Springer, 2019, pp. 549-562.

G. Macher, A. Much, A. Riel, R. Messnarz, and C. Kreiner, “Auto-
motive spice, safety and cybersecurity integration,” in Computer Safety,
Reliability, and Security, S. Tonetta, E. Schoitsch, and F. Bitsch, Eds.
Cham: Springer International Publishing, 2017, pp. 273-285.

E. Edwar, S. Sameh, and I. Sobh, “Aspice applicability on new auto-
motive technologies (ai),” in Systems, Software and Services Process
Improvement, M. Yilmaz, P. Clarke, R. Messnarz, and B. Woran, Eds.
Cham: Springer International Publishing, 2022, pp. 430—440.

B. Brosgol and C. Comar, “Do-178c: A new standard for software safety
certification,” ADA CORE TECHNOLOGIES NEW YORK NY, Tech.
Rep., 2010.

G. Islam and T. Storer, “A case study of agile software development
for safety-critical systems projects,” Reliability Engineering & System
Safety, vol. 200, p. 106954, 2020.

J. A. McDermid, “Issues in developing software for safety critical
systems,” Reliability Engineering & System Safety, vol. 32, no. 1-2, pp.
1-24, 1991.

R. E. Lopez-Herrejon, J. Martinez, W. K. G. Assuncdo, T. Ziadi,
M. Acher, and S. Vergilio, Handbook of Re-Engineering Software
Intensive Systems into Software Product Lines. Springer Nature, 2022.
R. Capilla, J. Bosch, K.-C. Kang et al., “Systems and software variability
management,” Concepts Tools and Experiences, vol. 10, p. 2517766,
2013.

R. Maschotta, M. Hammer, T. Jungebloud, M. Khan, and A. Zimmer-
mann, “Model-driven aspect-specific systems engineering in the auto-
motive domain,” in /[EEE International Conference on Recent Advances
in Systems Science and Engineering (RASSE), 2021, pp. 1-8.

0. Gotel, J. Cleland-Huang, J. H. Hayes, A. Zisman, A. Egyed,
P. Griinbacher, A. Dekhtyar, G. Antoniol, J. Maletic, and P. Mider,
“Traceability fundamentals,” Software and systems traceability, pp. 3—
22, 2012.

S. Demi, M. Sanchez-Gordon, and R. Colomo-Palacios, “What have we
learnt from the challenges of (semi-) automated requirements traceabil-
ity? a discussion on blockchain applicability,” IET Software, vol. 15,
no. 6, pp. 391411, 2021.

S. Maro, J.-P. Steghofer, and M. Staron, “Software traceability in the
automotive domain: Challenges and solutions,” Journal of Systems and
Software, vol. 141, pp. 85-110, 2018.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

A. Demuth, R. Kretschmer, A. Egyed, and D. Maes, “Introducing
traceability and consistency checking for change impact analysis across
engineering tools in an automation solution company: An experience
report,” in IEEE International Conference on Software Maintenance and
Evolution (ICSME), 2016, pp. 529-538.

L. Marchezan, W. K. G. Assuncdo, E. Herac, F. Keplinger, A. Egyed,
and C. Lauwerys, “Fulfilling industrial needs for consistency among
engineering artifacts,” in 45th International Conference on Software
Engineering (ICSE) - Software Engineering in Practice, 2023, pp. 1-12.
L. Marchezan, W. K. G. Assuncao, R. Kretschmer, and A. Egyed,
“Change-oriented repair propagation,” in International Conference on
Software and System Processes and International Conference on Global

Software Engineering. ACM, 2022, pp. 82-92.
L. Marchezan, R. Kretschmer, W. K. G. Assuncdo, A. Reder, and

A. Egyed, “Generating repairs for inconsistent models,” Software and
Systems Modeling, vol. 22, no. 1, pp. 297-329, apr 2022.

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

[38]

(391

[40]

C. C. Ratiu, W. K. G. Assuncdo, R. Haas, and A. Egyed, “Reactive
links across multi-domain engineering models,” in 25th International
Conference on Model Driven Engineering Languages and Systems.
ACM, 2022, pp. 76-86.

A. Demuth, M. Riedl-Ehrenleitner, R. E. Lopez-Herrejon, and A. Egyed,
“Co-evolution of metamodels and models through consistent change
propagation,” Journal of Systems and Software, vol. 111, pp. 281-297,
2016.

W. D. F. Mendonga, W. K. G. Assun¢do, and S. R. Vergilio, “Feature-
oriented test case selection during evolution of high-configurable sys-
tems,” in 27th Systems and Software Product Line Conference (SPLC).
ACM, 2023, pp. 1-11.

W. D. F. Mendonga, S. R. Vergilio, G. K. Michelon, A. Egyed, and
W. K. G. Assuncao, “Test2feature: Feature-based test traceability tool
for highly configurable software,” in 26th ACM International Systems
and Software Product Line Conference - Volume B. ACM, 2022, pp.
62-65.

J. Cleland-Huang, A. Agrawal, M. Vierhauser, and C. Mayr-Dorn, “Vi-
sualizing change in agile safety-critical systems,” IEEE Softw., vol. 38,
no. 3, pp. 43-51, 2021.

F. Tian, T. Wang, P. Liang, C. Wang, A. A. Khan, and M. A. Babar,
“The impact of traceability on software maintenance and evolution: A
mapping study,” Journal of Software: Evolution and Process, vol. 33,
no. 10, p. e2374, 2021.

D. Fucci, E. Alégroth, and T. Axelsson, “When traceability goes awry:
an industrial experience report,” arXiv preprint arXiv:2206.04462, 2022.
L. Westfall, “Bidirectional requirements traceability,” White Paper, The
Westfall Team, Dallas, 2006.

M. Shahid, S. Ibrahim, and M. N. Mahrin, “An evaluation of require-
ments management and traceability tools,” World Academy of Science,
Engineering and Technology, WASET, vol. 1, no. 1, pp. 1-6, 2011.

D. Amalfitano, V. De Simone, R. R. Maietta, S. Scala, and A. R.
Fasolino, “Using tool integration for improving traceability management
testing processes: An automotive industrial experience,” Journal of
Software: Evolution and Process, vol. 31, no. 6, p. e2171, 2019.

R. Wohlrab, J.-P. Steghofer, E. Knauss, S. Maro, and A. Anjorin,
“Collaborative traceability management: Challenges and opportunities,”
in 2016 IEEE 24th International Requirements Engineering Conference
(RE). IEEE, 2016, pp. 216-225.

H. Tufail, M. F. Masood, B. Zeb, F. Azam, and M. W. Anwar, “A
systematic review of requirement traceability techniques and tools,” in
2nd international conference on system reliability and safety (ICSRS).
IEEE, 2017, pp. 450-454.

S. Maro, J.-P. Steghofer, E. Knauss, J. Horkoff, R. Kasauli, R. Wohlrab,
J. L. Korsgaard, F. Wartenberg, N. J. Strgm, and R. Alexandersson,
“Managing traceability information models: Not such a simple task after
all?” IEEE Software, vol. 38, no. 5, pp. 101-109, 2020.

J. M. C. de Gea, C. Ebert, M. Hosni, A. Vizcaino, J. Nicolas, and J. L.
Ferndndez-Aleman, “Requirements engineering tools: An evaluation,”
IEEE Software, vol. 38, no. 3, pp. 17-24, 2021.

M. Gatrell, “The value of a single solution for end-to-end alm tool
support,” IEEE Software, vol. 33, no. 5, pp. 103-105, 2016.

A. Demuth, M. Riedl-Ehrenleitner, A. Nohrer, P. Hehenberger, K. Ze-
man, and A. Egyed, “Designspace: An infrastructure for multi-
user/multi-tool engineering,” in 30th Annual ACM Symposium on Ap-
plied Computing, ser. SAC *15. New York, NY, USA: Association for
Computing Machinery, 2015, p. 1486-1491.

A. Ghabi and A. Egyed, “Code patterns for automatically validat-
ing requirements-to-code traces,” in 2012 Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineer-
ing. 1EEE, 2012, pp. 200-209.

H. Kuang, P. Mider, H. Hu, A. Ghabi, L. Huang, J. Lii, and
A. Egyed, “Can method data dependencies support the assessment of
traceability between requirements and source code?” J. Softw. Evol.
Process., vol. 27, no. 11, pp. 838-866, 2015. [Online]. Available:
https://doi.org/10.1002/smr.1736

M. Hammoudi, C. Mayr-Dorn, A. Mashkoor, and A. Egyed,
“Tracerefiner: An automated technique for refining coarse-grained
requirement-to-class traces,” in 28th Asia-Pacific Software Engineering
Conference, APSEC 2021, Taipei, Taiwan, December 6-9, 2021.
IEEE, 2021, pp. 12-21. [Online]. Available: https://doi.org/10.1109/
APSEC53868.2021.00009

https://doi.org/10.1002/smr.1736
https://doi.org/10.1109/APSEC53868.2021.00009
https://doi.org/10.1109/APSEC53868.2021.00009

	Introduction
	Motivation and Problem Statement
	State of the Art and the Practice
	Traceability Support Challenges
	Traceability Support in the State-of-the-Art Tools

	Approach
	Architecture Overview
	Engineering Artifact Integration
	Traceability Data Model
	Trace matrix growing and shrinking
	Trace importing and creation
	Propagation trace changes back into tools

	Preliminary Evaluation
	Concluding remarks
	References

